Bootstrap
Pandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。本文主要介绍一下Pandas中pandas.DataFrame.droplevel方法的使用。

DataFrame.droplevel(self, level, axis=0)

返回删除指定的索引/列级别的DataFrame。

参数

level : int,str或list-like

如果给出了字符串,则必须是级别的名称。如果类似列表,则元素必须是级别的名称或位置索引。

axis : {0或'index',1或'columns'},默认为0

返回

DataFrame.droplevel()

例子

>>> df = pd.DataFrame([
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12]
... ]).set_index([0, 1]).rename_axis(['a', 'b'])


>>> df.columns = pd.MultiIndex.from_tuples([
... ('c', 'e'), ('d', 'f')
... ], names=['level_1', 'level_2'])
>>> df
level_1 c d
level_2 e f
a b
1 2 3 4
5 6 7 8
9 10 11 12
>>> df.droplevel('a')
level_1 c d
level_2 e f
b
2 3 4
6 7 8
10 11 12
>>> df.droplevel('level2', axis=1)
level_1 c d
a b
1 2 3 4
5 6 7 8
9 10 11 12