DataFrame.kurt(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs) [source]
使用Fisher的峰度定义(正常的峰度== 0.0)在请求的轴上返回无偏峰度。由N-1归一化。
| 参数: | axis : 要应用的功能的轴。 skipna :  计算结果时排除 level : 整数或级别名称,默认为 如果轴是MultiIndex(分层),则沿特定级别计数, 并折叠为Series。 numeric_only : 布尔值,默认值None 仅包括 如果为None,将尝试使用所有内容, 然后仅使用数字数据。未针对Series实施。 **kwargs 要传递给函数的其他关键字参数。 | 
| 返回值: | Series 或 DataFrame(如果指定级别) | 
例子
使用kurt()函数在索引轴上查找峰度
# importing pandas as pd 
import pandas as pd 
# Creating the dataframe  
df = pd.DataFrame({
    "A": [12, 4, 5, 44, 1], 
    "B": [5, 2, 54, 3, 2], 
    "C": [20, 16, 7, 3, 8], 
    "D": [14, 3, 17, 2, 6]
}) 
# Print the dataframe 
print("DataFrame:")
print(df)
# Calculate the kurtosis for each column
kurt_values = df.kurt()
print("\nKurtosis of each column:")
print(kurt_values)使用该dataframe.kurt()函数查找峰度
# importing pandas as pd 
import pandas as pd 
# Creating the dataframe  
df = pd.DataFrame({
    "A": [12, 4, 5, 44, 1], 
    "B": [5, 2, 54, 3, 2], 
    "C": [20, 16, 7, 3, 8], 
    "D": [14, 3, 17, 2, 6]
}) 
# Print the dataframe 
print("DataFrame:")
print(df)
# Calculate the kurtosis for each column
kurt_values = df.kurt(axis = 0) 
print(kurt_values)输出:
使用kurt()函数查找其中具有某些Na值的数据帧的峰度。在索引轴上找到峰度
# importing pandas as pd 
import pandas as pd 
# Creating the dataframe  
df = pd.DataFrame({
    "A": [12, 4, 5, None, 1],  
    "B": [7, 2, 54, 3, None], 
    "C": [20, 16, 11, 3, 8],  
    "D": [14, 3, None, 2, 6]
}) 
# Print the dataframe
print("DataFrame:")
print(df)
# Calculate the kurtosis, skipping NaN values
kurt_values = df.kurt(axis=0, skipna=True)
print("\nKurtosis of each column (with NaN values skipped):")
print(kurt_values)输出: